Inspector D4000™ Laser SP

Operator's Guide

Manual P/N 002-5572 Revision: B January 2013

THIS MANUAL APPLIES **ONLY** TO **FIRMWARE A.06 OR LATER**

Use Laser Inspector 1000 Manual (Revision H) for earlier firmware versions

RJS Technologies

701 Decatur Ave North, Suite 107 Minneapolis, MN 55427 U.S.A. +1 (763) 746-8034 www.rjs1.com

Copyrights

The copyrights in this manual are owned by RJS. All rights are reserved. Unauthorized reproduction of this manual or unauthorized use of the Inspector D4000 software may result in imprisonment of up to one year and fines of up to \$10,000.00 (17 U.S.C. 506). Copyright violations may be subject to civil liability.

Reference RJS P/N 002-7856 Revision A All Rights Reserved.

TABLE OF CONTENTS

1.0 PREFACE	<u> </u>
1.1 PROPRIETARY STATEMENT	1
1.2 STATEMENT OF FCC COMPLIANCE: USA	1
1.3 STATEMENT OF FCC COMPLIANCE: CANADA	1
1.4 CE:	1
1.5 DOCUMENTATION UPDATES	1
1.6 COPYRIGHTS	1
1.7 UNPACKING AND INSPECTION	1
1.8 Installing Batteries	2
1.9 TECHNICAL SUPPORT	2
1.10 Trademarks	3
2.0 WARRANTY	4
2.1 GENERAL WARRANTY	4
2.2 WARRANTY LIMITATIONS	4
2.3 SERVICE DURING THE WARRANTY PERIOD	4
3.0 INTRODUCTION	<u>5</u>
3.1 WARNINGS	5
3.2 RJS INSPECTOR D4000 DESCRIPTION AND FEATURES	6
3.3 MAINTENANCE	7
3.3 TEMPERATURE SPECS	7
4.0 THE RJS INSPECTOR D4000 LASER SP	<u>8</u>
5.0 MAIN MENU SELECTIONS	9
5.1 Power On	9
5.2 SETUP	9
5.3 Storage	13
6.0 SCANNING SYMBOLS	14
6.1 SCANNING TECHNIQUES	14
6.2 SCANNING RESULTS	14
7.0 PASS/FAIL ANALYSIS SCREEN	1 <u>5</u>
TABLE 7-A (CODE IDENTIFIER DESCRIPTIONS FOR PASS/FAI	IL ANALYSIS SCREEN) 15
TABLE 7-B (CODE IDENTIFIERS RJS INSPECTOR D4000)	17
7.1 MULTI-SCAN MODE	18
7.2 COMPARISON MODE	18
8.0 DATA ANALYSIS SCREENS	<u> 19</u>
8.1 ENCODED DATA	19
8.2 MODULO CHECK CHARACTER	20
8.3 SYMBOL SPECIFIC ERRORS	20
8.4 Inspection Results	21
BAR WIDTH - ACCEPTABLE	21
BAR WIDTH - WARNING	21
BAR WIDTH - REJECTED	21
TABLE 8-A (LED, BAR CODE WIDTH DEVIATIONS)	23
8.5 CONTINUOUS MODE	24
9.0 CONNECT TO OTHER DEVICES	<u> 25</u>
CONNECT TO COMPUTER	25
CONNECT TO PRINTER	25
APPENDIX A (SCANNING TECHNIQUE)	<u> 26</u>
SCANNING TECHNIQUE	26
FIGURE A-1 (SCANNING POSITION)	26

SPECIAL CONSIDERATIONS	26					
APPENDIX B (SYMBOLOGY ANALYSIS)	<u> 27</u>					
SYMBOLOGY ANALYSIS PARAMETERS	27					
TABLE B-1 (PARAMETER/ERROR MESSAGE) 27						
TABLE B-2 (PARAMETERS CHECKED FOR EACH SYMBOLO	GY)27					
APPENDIX C (ISO/ANSI DECODABILITY)	29					
ISO/ANSI DECODABILITY CALCULATIONS	29					
DECODABILITY GRADE CONVERSIONS	29					
APPENDIX D (QUIET ZONE ANALYSIS)	<u> 30</u>					
QUIET ZONE ANALYSIS	30					
TABLE D-1 (ACCEPTABLE PARAMETERS FOR SYMBOLS WITH	HOUT ADDENDUMS)	30				
TABLE D-2 (ACCEPTABLE PARAMETERS FOR SYMBOLS WITH	HADDENDUMS)	30				
APPENDIX E (CODE 128)	31					
CODE 128	31					
DISPLAY OF CODE 128	32					
TABLE E-1 (CODE 128 — SUBSET A)	33					
TABLE E-2 (CODE 128 — SUBSET B)	34					
TABLE E-3 (CODE 128 — SUBSET C)	35					
APPENDIX F (GS1-128 SPECIFICATION)	<u>37</u>					
TESTING PARAMETERS	37					
FNC1 TESTING	37					
DATA CONTENT TESTING	38					
APPENDIX G (MAGNIFICATIONS)	40					
UPC/EAN MAGNIFICATIONS & BAR WIDTH DEVIATIONS	40					
APPENDIX H (PRINT FUNCTIONS)	<u>41</u>					
PRINT FUNCTIONS	41					
PRINTOUT OPTIONS	41					
Analysis	41					
Storage	41					
APPENDIX I (COMPUTER MODE)	<u>42</u>					
OUTPUT DATA	42					
FIGURE I-1 (GS1-128 FAILURE)	42					
Figure I-2 (Code 3 of 9 Passing)	43					
APPENDIX J (BATTERY DISPLAYS)	<u>44</u>					
BATTERY DISPLAYS	44					
APPENDIX K (BAR CODE DEFINITIONS)	<u>45</u>					

RJS, Minneapolis, MN 002-5572 ii

1.0 Preface

1.1 Proprietary Statement

The RJS Inspector D4000 Operator's Guide contains proprietary information of RJS. It is intended solely for the use of parties operating and maintaining the equipment described herein. This information may not be used, reproduced, or disclosed to any other parties for any other purpose without the express written permission of RJS.

1.2 Statement of FCC Compliance: USA

The equipment described in this manual has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide a reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with this operator's manual, may cause harmful interference to radio communications. Operating this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the problem at your own expense.

1.3 Statement of FCC Compliance: Canada

This Class A digital apparatus meets all requirements of the Canadian interference-Causing Equipment Regulations.

Cet appareil numénque de la classe A respecte toutes les exigences du Règlement sur le maténel brouilleur du Canada.

1.4 CE:

This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with this operator's manual, may cause harmful interference to radio communications. Operating this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the problem at your own expense.

1.5 Documentation Updates

RJS strives to provide the best possible documentation. This manual, or any of our manuals, may be updated without notice.

1.6 Copyrights

The copyrights in this manual are owned by RJS. All rights are reserved. Unauthorized reproduction of this manual or unauthorized use of the software may result in imprisonment of up to one year and fines of up to \$10,000 (17 U.S.C.506). Copyright violations may be subject to civil liability.

1.7 Unpacking and Inspection

Carefully unpack the components and save the container. If the container is crushed, punctured or water damaged you can use the container to prove a claim against the carrier. RJS is not responsible for transportation damage.

Your RJS Inspector D4000 is packaged in a custom made container. After removing the unit from the shipping box makes sure you have:

- Main display unit
- SP1 Laser and cable
- Four size AA batteries
- Operator's manual
- Bar code "test" symbol sheets

1.8 Installing Batteries

Slide open the plastic cover on the back of the unit. Position the cloth battery "pull strip" down then insert 4 (included) batteries according to the positive/negative markings.

Note:

If all 4 batteries are inadvertently installed backwards, the inspector unit will be damaged.

Remove batteries when the unit will not be used for a period of weeks. Also, remove batteries when storing the unit.

Note:

NiCad batteries and charger are available as an option

Warning:

When using the optional charger, **DO NOT** charge alkaline batteries - this will damage the verifier

1.9 Technical Support

Please read the manual and try to understand it, first.

If you need assistance over the phone, please have the following information ready:

- Model and serial number of your unit
- Do you have a maintenance contract in effect
- Have a test print available if applicable
- Detailed explanation of the problem or question
- Your company's phone

1.10 Trademarks

The following are trademarks of RJS:

- RJS
- RJS Systems International
- Inspector
- RJS Inspector D4000

RJS

701 Decatur Avenue North, Suite 107 Minneapolis, MN 55427 U.S.A. +1 (763) 746-8034 support@rjs1.com

2.0 Warranty

2.1 General Warranty

Warranty information: +1 (763) 746-8034

RJS warrants your RJS Inspector D4000 to be free from defects in material and workmanship for a period of 1 year from the date of shipment from RJS' factory location.

The liability of RJS under this warranty is limited to repairing or replacing the defective part and/or unit. RJS may optionally choose to issue credit for any unit returned during the warranty period.

You must promptly notify RJS of any defect in order to receive the full protection of this warranty.

2.2 Warranty Limitations

The warranty set forth above is exclusive and no other warranty, whether written or oral is expressed or implied. RJS specifically disclaims the implied warranties of merchantability and fitness for a particular purpose.

Some states or provinces do not allow limitation on how long an implied warranty lasts, so the above limitation or exclusion may not apply to you. However, any implied warranty of merchantability or fitness is limited to the one year duration of this written warranty.

RJS shall in no event be liable for any indirect, incidental, or consequential damages, including but not limited to damages which may arise from loss of anticipated profits or production delivery delays, spoilage of material, increased costs of operation of business or otherwise.

2.3 Service during the Warranty Period

If your RJS Inspector D4000 should fail during the warranty period, contact RJS or its authorized representative immediately upon discovery of the defect. A Return Authorization Number (RMA number) may be obtained by visiting our website address:

http://www.rjs1.com/request_rma.php

You will be asked to ship the product in its original packing, freight prepaid, with the RMA number visibly written on the outside of the carton to RJS' factory location.

Be sure to include any samples or printouts or other information that will help us to understand the problem. Your repair will be given priority treatment, or your unit may be replaced at RJS' option. The repaired item will be returned UPS/United States Postal Service ground, freight prepaid.

At your request we will ship express or overnight if you need premium service and agree to pay the additional cost.

RJS, Minneapolis, MN 002-5572

3.0 Introduction

3.1 Warnings

- Do not point the Laser in the direction of the eyes so that the light beam emitted by the unit strikes the eyes directly—this could result in eye damage.
- Keep the unit and gun away from a water source such as a faucet—this could short the unit and cause injury.
- Users of the verifier (unit and gun) are not authorized to open case(s) or in any way modify circuitry.
- The following caution labels should already be on the Laser (and must remain on the Laser):

LASER LIGHT - DO NOT STARE INTO BEAM EMITTED WAVELENGTH 630-680nm MAX. OUTPUT RADIATION 1.0mW CLASS 2 LASER PRODUCT EN 60825-1:2007

This product complies with 21 CFR Subchapter J CLASS 2 LASER LIGHT WHEN OPEN AVOID EXPOSURE - LASER LIGHT IS EMITTED FROM THIS APERTURE DO NOT STARE INTO BEAM

If a caution label(s) with equivalent information as shown on the examples to the right are not on the Laser, notify RJS at once.

This equipment complies with the requirements in part 15 of FCC rules for a class A computing device. Operation of this equipment in a residential area may cause interference in radio and TV reception, requiring the operator to take whatever steps are necessary to correct the interference. Class II laser product.

This product conforms to DHMS

This product conforms to DHMS regulation 21 CFR subchapter J for use with listed class II EDP equipment

Not user serviceable. Opening case voids warranty.

3.2 RJS Inspector D4000 Description and Features

The RJS Inspector D4000 is an advanced technology bar code verifier that makes it easy to decode bar code symbols and to evaluate symbol compliance with industry standards.

Features

- Automatic power-on by pressing trigger
- Scan bar codes on curved surfaces
- GS1-128 data content validation
- Auto-discriminates between many different symbologies
- Auto-print mode
- Low battery indicator
- Barcode symbol data and deviation displays
- Multiple scan averaging
- Power-down is automatic after short period of disuse
- Programmable, multi-scan analysis
- Store and print capabilities
- Visual and audible signals

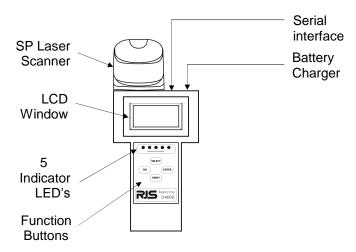
Note:

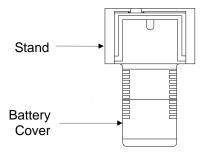
The D4000 Laser SP is **NOT** a full ISO/ANSI bar code verifier. It will **ONLY** inspect the Decodability parameter (which will be accurate when the Laser is held at the proper angle and distance). If you need to comply with the ISO15416 bar code quality standards then the D4000 Auto Optic will be required.

RJS, Minneapolis, MN 002-5572

3.3 Maintenance

To ensure the best possible scanning conditions, keep the laser window and display window clean. Use a soft, damp, lint-free cloth to clean the windows.


Do not use solvents on the unit or on any of the components. You may use alcohol to clean the unit.


3.3 Temperature Specs

Do not operate or store your unit or components in temperatures outside the range of 50° - 105°.

Do not operate or store your unit in conditions of high humidity—over 80%.

4.0 The RJS Inspector D4000 Laser SP

RJS, Minneapolis, MN 002-5572

5.0 Main Menu Selections

5.1 Power On

When the unit is powered on, the following "Ready" screen will display after a few seconds:

x.xx = Current revision of the firmware

Press Enter and Select at the same time to bring up the Main Menu:

x.xx = Current revision of the firmware

The selectable functions are: Scan, Setup and Storage:

- Press **Select** to choose an option.
- Press Enter to initiate processing for that option.

Select **Scan** (from the Main Menu) to display the initial Pass/Fail Analysis screen for the previously scanned bar code.

5.2 Setup

Select **Setup** (from the Main Menu) to view various system parameters:

- Press **Select** to choose an option
- Press Enter to initiate processing for that option

The first selection is Decodability Warning:

Select an ISO/ANSI Decodability grade to use in your analysis.

(See *Appendix C* for an explanation of the grades)

A warning message will be produced for the selected grade or any lower grades:

B C D F NONE

If **NONE** is selected, the Decodability grade will not be used to trigger a warning message. However, the Decodability grade will be calculated and available for viewing.

The next selection is UPC/EAN tolerance:

The magnifications are:

80 - 89 % Mag 90 - 115 % Mag 116 - 150 % Mag 151 - 200 % Mag

(See Appendix G for an explanation of magnifications)

RJS, Minneapolis, MN 002-5572 10

The next selection allows you to select if the check digit for UPC/EAN Random Weight bar codes should be tested:

Note:

Select **On** to activate UPC/EAN random weight check digit calculations. (See Appendix B, Table B-2 Notes)

The next selection is Decode 3 of 9 as:

This selection is for choosing the Code 39 sub-specifications for analysis:

Code 3 of 9 3of9 w/43 AIAG B-1 AIAG B-3/4/5/10 LOGMARS HIBC 3 of 9

The next selection is Decode I 2 of 5 as:

This selection is for choosing the Code I 2 of 5 sub-specifications for analysis:

Std I2of5 ITF14 Case Code I25 w/mod 10

The next selection is Decode C128 as:

This selection is for choosing the Code 128 sub-specifications for analysis:

Std 128
GS1-128 (tests all Application IDs and code length)

The next selection is Auto Print Mode:

Two choices are available in Auto Print Mode:

11

1. **On**: (For the TP140A / TP140 / TP40 / Computer) Both ISO/ANSI and Traditional analysis will print automatically after a symbol is scanned.

Operator's Guide

2. Off: You must press the print button to print.

(See Appendix H - Print Functions)

The next selection is Output Device:

Three output choices are available:

- 1. When **TP140** is enabled, the data is output in the format required by a **TP140/TP140A** printer
- 2. When **TP40** is enabled, data output is in the format of analysis only
- 3. When Computer is enabled, data is output in computer readable format (text and graphics) (See Section 9.0, Connect to Computer)

The next selection is Scans/Analysis:

From this screen you may choose the number of scans (from 1 (single) to 10 or continuous) to be used in the analysis. When set to continuous the D4000 will scan and grade bar codes until the Laser trigger is released, then the Continuous Results screen will be displayed: (See 8.5 Continuous Mode)

The last selection is Comparison Mode:

When Comparison Mode is **On**, the first bar code scanned *after* turning Comparison Mode **On** will be saved as the *Master* bar code. All bar codes scanned will be compared to the *Master* bar code and if the encoded data does **not** match then a *No Match* error will be displayed. (See 7.2, Comparison Mode)

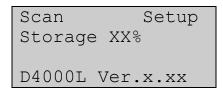
Note:

When all Setup selections have been made, the RJS Inspector D4000 will navigate back to the Main Menu automatically.

All setup parameters are retained in non-volatile memory and will be saved until changed by you—even if the power is turned off.

RJS, Minneapolis, MN 002-5572 12

5.3 Storage


Storage will display as either Storage Inactive or

Storage % depending on whether Store and Print is enabled or disabled.

- When Store and Print is enabled, a number and a percentage sign 00% to 99% will display.
- When Store and Print is disabled, Storage Inactive will display.

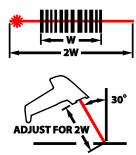
```
Scan Setup
Storage Inactive
D4000L Ver.x.xx
```

"Inactive" displays when **Store** and **Print** is inactive.

A storage "%" displays when **Store** and **Print** is active.

If a % is displayed, it represents the percentage of the buffer that is filled with scan data.

You may enable or disable Store and Print by pressing **Enter** with the cursor on Storage. (*Toggle from one option to the other*)


When Storage is active, press **Select** to move the cursor to the % sign. Press **Enter** on the % sign to clear the Store and Print buffer.

(See Appendix H, Print Functions)

6.0 Scanning Symbols

6.1 Scanning Techniques

- Lay the symbol to be scanned on a flat, non-reflective surface
- While the laser beam is **not** over a bar code pull the trigger on the Laser
- Adjust the angle and distance of the Laser to the bar code sample so that the distance results
 in a laser beam that is twice as wide as the bar code (at least 2 inches wide) and the angle is at
 30 degrees (angle of the exit window on the Laser)
- Once at the proper angle and distance, drag the laser beam over the bar code (maintaining the angle and distance)

(See Appendix A - Scanning Technique)

6.2 Scanning Results

After a bar code is scanned, the RJS Inspector D4000 will respond with a crisp, chirp *(or beep)* sound.

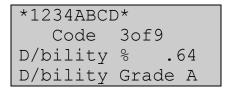
Inspector Display after a scan when the Multiple Scan analysis is set to two:

```
*1234ABCD*
01 Scans Remain.
```

Press **Select** to view the grade for the previous scan (applies when there are one or more scans remaining):

```
*1234ABCD*
Code 3of9
D/bility % .64
D/bility Grade A
```

Note:


See 7.0 Pass/Fail Analysis Screen section for details the inspection tests and results

RJS, Minneapolis, MN 002-5572 14

7.0 Pass/Fail Analysis Screen

After the symbol is scanned the Pass/Fail Analysis Screen will be displayed.

An example of a Pass/Fail Analysis Screen for an acceptable symbol is shown below:

This screen shows:

- The first line is the decoded data. (If more than 16 characters are present, those characters will
 wrap to the next row of the display) Press Select to scroll through the data
- The second line provides the Symbology type
- The third line is the ISO/ANSI Decodability percentage grade
- The fourth line is the ISO/ANSI Decodability letter grade

Below is a sample of scans remaining in multiple scan mode if the last scan has not been completed.

If the symbology code is 128, only printable characters will be displayed.

Note:

See *Appendix E* for descriptions of how these codes are displayed

Table 7-A (Code Identifier Descriptions for Pass/Fail Analysis Screen)

Identifier	Symbology Type	
B-1	Code 39; B-1 sub-specification for AIAG	
B345	Code 39; B3, 4, 5, or 10 sub-specification	
	for AIAG	
LOG	Code 39; LOGMARS sub-specification	
HIBC	Code 39; HIBC sub-specification	
3 OF 9	Code 39; Traditional ISO/ANSI	
	sub-specification	
39+C	Code 39; with Mod 43	
25+C	Interleaved 2 of 5 with Mod 10	
125	Interleaved 2 of 5	
CC	Interleaved 2 of 5 ITF-14	
	sub-specification	
GS1	GS1-128 Code 128	
C128	Code 128	
UPCA	UPC version A	
UA+2	UPC version A plus 2 digit addendum	
UA+5	UPC version A plus 5 digit addendum	
UPCE	UPC version E	
UE+2	UPC version E plus 2 digit addendum	
UE+5	UPC version E plus 5 digit addendum	
EAN8	EAN 8 character	
E8+2	EAN 8 plus 2 digit addendum	

E8+5	EAN 8 plus 5 digit addendum			
EN13	EAN 13 character			
13+2	EAN 13 plus 2 digit addendum			
13+5	EAN 13 plus 5 digit addendum			

Note:

The *Identifiers* listed above are displayed when the bar code is acceptable. Some *Identifiers* will be different if a warning is issued for the bar code.

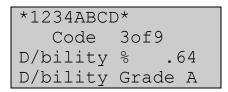
Table 7-B (Code Identifiers RJS Inspector D4000)

LOGMARS	Code 39 symbology
AIAG B-1	Code 39 symbology
AIAG B 3/4/5/10	Code 39 symbology
Code 3 of 9	Code 39 symbology
HIBC 3 of 9	Code 39 symbology
3of9 W/43	Code 39 symbology
I 2 of 5 w/mod10	Interleaved 2 of 5 symbology
Std I2of5	Interleaved 2 of 5 symbology
ITF14 Case Code	Interleaved 2 of 5 symbology
GS1-128	Code 128 symbology
Std 128	Code 128 symbology

X - Y % UPC-A	Uniform Product Code, Ver. A			
X - Y % UPCA+2	Uniform Product Code, Ver. A with 2 digit Add			
X - Y % UPCA+5	Uniform Product Code, Ver. A with 5 digit Add			
X - Y % UPC-E	Uniform Product Code, Ver. E			
X - Y % UPCE+2	Uniform Product Code, Ver. E with 2 digit Add			
X - Y % UPCE+5	Uniform Product Code, Ver. E with 5 digit Add			
X - Y % EAN-13	European Article Number 13 digit			
X - Y % EAN13+2	European Article Number 13 digit with 2 digit Add			
X - Y % EAN13+5	European Article Number 13 digit with 5 digit Add			
X - Y % EAN-8	European Article Number 8 digit			
X - Y % EAN8+2	European Article Number 8 digit with 2 digit Add			
X - Y % EAN8+5	European Article Number 8 digit with 5 digit Add			

Note:

On the previous tables, all ISO/ANSI symbologies use the traditional specifications for bar width deviation.


X and Y represent the magnification range selected for UPC/EAN tolerances.

7.1 Multi-scan mode

When multi-scans are selected, the number of remaining scans needed to complete the analysis are displayed:

```
*0192837465*
03 Scans Remain
```

The resulting analysis is an average of the scans. Press the **Select** to view the Results screen:

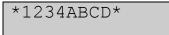
After the last scan a double beep or chirp will signal completion of the scan.

7.2 Comparison Mode

The first bar code scanned *after* turning Comparison Mode *On* will be saved as the "Master" bar code. All bar codes scanned will be compared to the "Master" bar code and if the encoded data does **not** match then the following screen will be displayed.

Note:

To enter a new "Master" bar code, toggle the Comparison Mode selection to **Off** and then to **On** again.


8.0 Data Analysis Screens

After doing a scan, the Pass/Fail Analysis screen is displayed press **Enter** to bring up the Data Analysis Screens.

(See Pass/Fail Analysis, 7.0)

8.1 Encoded Data

The first screen to display is the Decoded Symbol Data from the Pass/Fail Screen:

Note:

If more than 16 characters are present, those characters will wrap to the next row of the display

Note:

Code 128 is an exception. See Appendix E for details

8.2 Modulo Check Character

Press **Select** to bring up the next screen (if applicable):

This display indicates (*when applicable*) the Modulo check character decoded and the Modulo check character that should have been decoded (*expected*) in the symbol. PASS or FAIL is also indicated.

Note:

For Code 128, the mod check character (Mod 103) is displayed as the symbology's character value (a number from 000 to 102). One or two numeric Mod check characters may precede the 3-digit Code 128 Mod check described above. These digits represent the Mod 10 check character(s) that can be included depending on the format.

8.3 Symbol Specific Errors

Press **Select** to bring up the next screen:

Symbology type is indicated on the top row and the analysis overview on the bottom row.

8.4 Inspection Results

Press **Select** to bring up the next screen:

```
Ratio: 2.2 P
D/bility .48 C
-100% Tol. +100%
-----RRARR+++
```

This screen shows:

- The first line is the Ratio calculation (when applicable)
- The second line is the ISO/ANSI Decodability percentage and letter grade
- The third line and fourth lines are the Bar width deviations chart

Note:

The location of the "A" is indicated with the 5 LEDs also See *Table 8-A*.

The closer the "A" is to the center of the display, the better.

The following shows the percentage of the scanning tolerance used at each position on the display:

-	-	-	-	-	-	-	-		+	+	+	+	+	+	+
93	79	65	50	36	22	8	1	0	8	22	36	50	65	79	93

- Negative numbers to the left indicate bars that are narrower
- Positive numbers to the right indicate bars that are wider

The closer the "A" is to the edge, the more likely the Reject.

A symbol is "Acceptable" until any calculated bar width deviation exceeds 100% of the tolerance for the symbology decoded; for example:

Bar Width - Acceptable

Bar Width - Warning

Bar Width - Rejected

"A" is out of tolerance and off the screen.

Note:

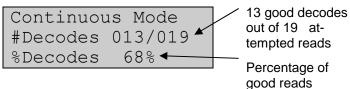
Could also be on negative side (See Table 8-A for visual display of deviations)

[&]quot;R" letters represent "range" of bar widths in the code.

[&]quot;A" represents the average of all character bar width deviations.

RJS, Minneapolis, MN 002-5572 22

Table 8-A (LED, Bar code Width Deviations) 5 LED Display | Average Bar width deviation as a


5 LED Display	Average Bar width deviation as a
Pattern	% of tolerance
\bigcirc	Within +21% to -21%
\bigcirc	Within +22 to +49%
\bigcirc	Within +50 to +78%
$\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc$	Within +79 to +99%
\bigcirc	Out of tolerance (wide)
$\bigcirc \bullet \bullet \bigcirc \bigcirc$	Within -22 to -49%
$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$	Within -50 to -78%
	Within -79 to -99%
\bullet	Out of tolerance (narrow)

Note:

Solid indicators represent LEDs turned on and the 9 possible patterns are displayed.

8.5 Continuous Mode

In the Continuous Mode, an additional data analysis screen displays:

- The first line indicates the results are for a scan captured with the Continuous Mode On
- The second line is the number of scans with decoded bar codes and the number of scan attempts.
- The third line is the percentage of bar codes decoded to scan attempts. (This is NOT the ISO/ANSI Decodability percentage)

There is a limit of 100 **good** scans in the Continuous Mode (or 250 **total** scans) whichever comes first. When a limit is reached, the unit automatically stops scanning.

Note:

In Continuous Mode the unit continues to attempt reads as long as the Laser trigger is depressed. When using this mode the beam may be moved around the symbol to provide extra analysis. The analysis result is based on the average.

Note:

After scanning a bar code, the Inspector D4000 will return to the last Data Analysis screen displayed before the bar code was scanned.

The Data Analysis screens will cycle through a loop. Once the last screen has been viewed, pressing the **Select** button again will return the Inspector D4000 to the initial Data Analysis Screen.

RJS, Minneapolis, MN 002-5572 22

9.0 Connect to other Devices

Connect to Computer

You may store and print the analysis on a Windows PC computer using the *optional* VCIR software package.

(Your RJS Inspector D4000 Laser SP will connect to a computer with a serial interface cable; 9600 BPS, 8 bit, no parity, 1 stop bit)

Connect to Printer

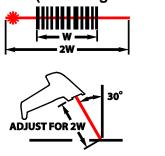
Your RJS Inspector D4000 will connect to an RJS TP140A/TP140/TP40 printer with a serial interface cable.

Contact RJS to order either the VCIR software or printer:

RJS Technologies

701 Decatur Ave North, Suite 107 Minneapolis, MN 55427 +1 (763) 746-8034 Sales@rjs1.com

Appendix A (Scanning Technique)


The D4000 Laser SP bar code verifier utilizes the CR2 Laser which has three major improvements when compared to the previous models:

- Codes with an X dimensions as small as 5 mils (0.005 inch, 0.127 mm) can be analyzed (vs. 0.0075 inch, 0.190 mm).
- More accurate correlation to the ISO/ANSI Decodability calculation is achieved.

Scanning Technique

- Lay the symbol to be scanned on a flat, non-reflective surface
- While the laser beam is not over a bar code pull the trigger on the Laser
- Adjust the angle and distance of the Laser to the bar code sample so that the distance results
 in a laser beam that is twice as wide as the bar code (at least 2 inches wide) and the angle is at
 30 degrees (angle of the exit window on the Laser)
- Once at the proper angle and distance, drag the laser beam over the bar code (maintaining the angle and distance)

Figure A-1 (Scanning Position)

Note:

A label containing this information is also attached to the top of the scanner for quick reference.

Special Considerations

When scanning codes on a low contrast substrate like corrugated material or a specular substrate (such as shiny aluminum or plastic material), a scan angle other than 30 degrees may produce better decoding characteristics. Contact RJS Technical support if scanning problems occur.

Operator's Guide Appendix B

Appendix B (Symbology Analysis)

Symbology Analysis Parameters

Table B-1 shows error messages that will be displayed for each parameter type checked by the RJS Inspector D4000.

Table B-1 (Parameter/Error Message)

Parameter	Data Analysis Message
Ratio	Warning Ratio
Ratio 1.8 < or > 3.4	Rejected Ratio
Inter-Character Gap (ICG)	Bad ICG
Invalid Data Character	Invalid format
Too Few Characters	Invalid format
I 2 of 5 Case code not 14 or 18	Invalid format
characters	
Code 128 GS1 Case code not	Invalid format
14 or 18 characters or not all	
numeric characters	
Mod Check Digits	Bad Mod. Check
PCS	Rejected PCS
Bar Width Deviation Edge of	Warning Wide
Range (Wide)	
Bar Width Deviation Edge of	Warning Narrow
Range (Narrow)	
Bar Width Deviation Out of	Rejected Wide
Range (Wide)	
Bar Width Deviation Out of	Rejected Narrow
Range (Narrow)	
Addendum Parity (UPC/EAN)	Invalid Format
ISO/ANSI Decodability (if	Warn D/bility (DCD, in initial
enabled)	Pass/Fail screen)
Object in Quiet Zone	Defects F, 50% or greater
Quiet Zone Too Small	Warning QZ/SS
<fnc1> with Standard C128</fnc1>	Format Warning
No <fnc1> with GS1 Selected</fnc1>	Warn Missing F1

Table B-2 (Parameters Checked for Each Symbology)

Symbology	Ratio	ICG	Data Character	Mod Check	Tolerance
AIAG B-1	2.2-3.2	.5X-8X	STD CODE 39	N/A	((12R- 8)/81)X
AIAG B-3 B-4 B-5 B-10	2.8-3.2	.5X-8X	\$/+% Not Allowed	N/A	((12R- 8)/81)X
LOGMARS	2.2-3.0	.5X-8X	STD CODE 39	N/A	((12R- 8)/81)X
CODE 3 OF 9	2.2-3.0	.5X-8X	STD CODE 39	N/A	((12R- 8)/81)X
3 OF 9 W/43	2.2-3.0	.5X-8X	STD CODE 39 4 CHARS Min	MOD 43	((12R- 8)/81)X
HIBC 3 OF 9	2.2-3.0	.5X-8X	STD CODE 39 Min 2 CHARS 1ST. = "+"	MOD 43	((12R- 8)/81)X
INTERLVD 2 OF 5	2.2-3.0	N/A	N/A	N/A	((18R- 1)/80)X
002-5572		27 RJS, Minneapolis, MN			

Appendix B

Operator's Guide

CASE CODE	2.3-2.9	N/A	3 Data Chars Min.	MOD 10	((18R- 1)/80)X
CODE 128	N/A	N/A	N/A	MOD 103	.35X
CASE CODE 128	N/A	N/A	16 Data Char. Format Check	Mod 10 Mod 102	.35X
UPC/EAN	N/A	N/A	N/A	MOD 10	See Note 1 (below)
CODABAR VARIANT	2.2-3.0	.5X-8X	STD CODABAR	N/A	((5R-8)/20)X
CODE 93	N/A	N/A	STD CODE 93	C&K	.35X

Notes:

- X = X dimension
- R = Ratio in the calculations
- Tolerance is expressed as a fraction of the X dimension
- See Appendix D for Quiet Zone Analysis descriptions.

Note:

UPC/EAN tolerances:

80 - 89% = .14X 90 - 115% = .30X 116 - 150% = .34X 151 - 200% = .38X

• UPC-A symbols with a number system character value of 2 and EAN-13 symbols with a prefix of 20 contain a random weight check digit in addition to the normal Mod 10 check digit. This extra digit is automatically analyzed and displayed in the Mod Check Data Analysis screen as shown below:

Modck: 1 5 PASS Expect: 1 5

Note:

The 1 is the random weight check digit and the 5 is the Mod 10 check digit. The symbology specifications allow the check digit to have a value of zero in cases where it is not used

In cases where the random weight check digit is zero, when another value is expected, a Bad Mod Check Warning <u>will not</u> be issued. The LCD display and corresponding printout will note the discrepancy with a "CHK" message in place of "FAIL" as shown below:

Modck: 0 CHK Expect: 1

Operator's Guide Appendix C

Appendix C (ISO/ANSI Decodability)

ISO/ANSI Decodability Calculations

There is a specified method for calculating Decodability for each symbol. But the method is generally the same for all. Each element width in a bar code symbol should be consistent across the symbol.

In the case of Code 39, two element widths are needed to produce a symbol. For optimum scanning, each narrow element, whether a bar or space, should have the same width dimension. And each wide element should have the same width dimension.

The Decodability grade indicates the amount of <u>tolerance remaining</u> in the width of the most deviant element in the symbol (the more tolerance remaining, the higher the grade). Grade "A" is the highest grade and grade "F" is lowest. (Even grade "F" may be decodable)

The grade is displayed in both its calculated numeric form and in its alphanumerical equivalent (the ISO15416 and ANSI X3.182-1990).

Decodability Grade Conversions

- ≥ .62 = A
- ≥ .50 = B
- ≥ .37 = C
- ≥ .25 = D
- < .25 = F

Appendix D (Quiet Zone Analysis)

Quiet Zone Analysis

The RJS Inspector D4000 trims data gathered during a scan to approximately 10 times the X dimension on each side of a bar code for all symbologies except UPC and EAN. The areas are assumed to be quiet zones and are included in the symbol analysis. If a low reflectance object is detected in these areas the screen displays:

Quiet Zone Analysis for UPC and EAN symbols are described in the following tables. In cases where an addendum is included in the bar code, an addendum gap analysis is also performed.

Table D-1 (Acceptable Parameters for Symbols Without Addendums)

Symbology	Leading QZ	Trailing QZ
UPC-A	9X Minimum	9X Minimum
UPC-E	9X Minimum	7X Minimum
EAN-13	11X Minimum	7X Minimum
EAN-8	7X Minimum	7X Minimum

Table D-2 (Acceptable Parameters for Symbols With Addendums)

Symbology	Leading QZ	Trailing QZ	GAP Size
UPC-A	9X Minimum	5X Minimum	9 - 12X
UPC-3	9X Minimum	5X Minimum	9 - 12X
EAN-13	11X Minimum	5X Minimum	7 - 10X
EAN-8	7X Minimum	5X Minimum	7 - 10X

Operator's Guide Appendix E

Appendix E (Code 128)

Code 128

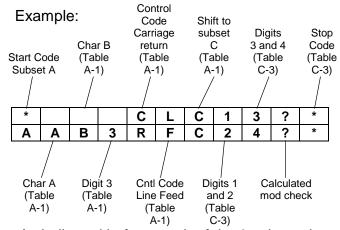
Code 128 can encode all the characters currently encodable in the various code formats presently in existence. This includes: All ASCII alphanumeric characters (numbers, letters, special characters, control characters in the 128 character set and the distinction of the 3 subsets, A, B and C).

Code subset A includes the standard <u>alphanumeric</u> (upper case only) keyboard characters plus control and special characters.

Code subset B includes all the standard <u>alphanumeric</u> keyboard characters and special characters (upper and lower case).

Code subset C includes a set of 100 digit pairs from 00 to 99 inclusive, allowing definition of double density numeric digits per symbol, plus special characters.

The last 7 characters in Subsets A and B (96 - 102) and the last 3 characters in Subset C (100 - 102) are special characters that are specific to the scanning device.


Code 128 also offers the flexibility to "shift" to other subsets in order to combine the "unique" features into one condensed bar code.

Display of Code 128

The Inspector display can accommodate up to 16 characters. However, in order to display symbols greater than 16 (maximum of 64), press **Select** to display the additional characters.

The encoded data occupies 2 rows on the LCD and is encoded in a columnar display with one character above the other.

- The first character (column) displays the subset (*A = Subset A).
- The last character is a stop code (**).
- The second from the last is a mod 103 check character.
- Double characters beginning with alphanumeric characters designate non-printable control codes applicable to all subsets.
- Double numeric characters designate the compressed digit mode in subset C only.
- Single characters will always be displayed on the lower row and are applicable to only subsets A and B (normal printable characters).

As indicated before, each of the 3 subsets have "unique" features:

- Subset A allows for encodation of control codes but not lower case alpha characters
- Subset B allows for lower case alpha characters but not control codes
- Subset C allows for only numeric data in a compressed format

Refer to Code 128 tables (subsets) on the following pages.

Note:

On the following three tables (E-1, E-2, and E-3):

- The top grid (unshaded) displays the Code 128 character set
- The bottom grid (shaded) displays the data on the Inspector's LCD screen
- If the bottom grid (shaded) displays two characters (one on top of the other) this is the two rows that will be shown on the Inspector's LCD screen

RJS, Minneapolis, MN 002-5572 32

Chara	Set \	Tab	le E-1	(Code	128 –	- Subs	et A)		
LCD Scr SP	reen !	"	#	\$	%	&	í	()
	!	"	#	\$	%	&	í	()
*	+					0	1	2	3
*	+	,	-	•		0	1	2	3
	·	,		•	,	0	'	2	3
4	5	6	7	8	9	:	;	<	=
4	5	6	7	8	9	:	,	<	=
>	?	@	Α	В	С	D	Е	F	G
>	?	@	Α	В	С	D	Е	F	G
Н	ı	J	K	L	M	N	0	P	0
Н	<u>'</u>	J	K	L	M	N	0	P	Q Q
- 11	- 1	J	K		IVI	IN	U	Г	Q
R	S	T	U	V	W	Х	Υ	Z	[
R	S	Т	U	V	W	X	Υ	Z	[
\]	٨	_	NUL	SOH	STX	ETX	EOT	ENQ
¥]	٨	_	N	S	S	E	Е	Е
				L	Н	Х	X	Т	Q
ACK	BEL	BS	HT	LF	VT	FF	CR	SO	SI
Α	В	В	Н	L	V	F	С	S	S
K	L	S	Т	F	Т	F	R	0	I
DLE	DC1	DC2	DC3	DC4	NAK	SYN	ETB	CAN	EM
D	D	D	D	D	N	S	E	С	Е
Е	1	2	3	4	K	N	В	N	М
SUB	ESC	GS	RS	US	FNC3	FNC2	Shft	Code C	Code B
S	Е	G	R	U	F	F	S	С	С
В	С	S	S	S	3	2	Т	С	В
FNC4	FNC1		tart A	Start B	Start C	Stop			

В

С

F

1

F

Character Set		Tab	Table E-2 (Code 128 — Subset B)								
LCD Sc			ш	Φ.	0/	0		,	\		
SP	! `	"	#	\$	%	&		()		
	!		#	\$	%	&	•	()		
*	+	,	-		/	0	1	2	3		
*	+	,	-			0	1	2	3		
		·									
4	5	6	7	8	9	į	;	<	=		
4	5	6	7	8	9	:	;	<	=		
>	?	@	Α	В	С	D	E	F	G		
>	?	@	Α	В	С	D	Е	F	G		
Н	1	J	K	L	М	N	0	Р	Q		
Н	- 1	J	K	L	М	N	0	Р	Q		
R	S	T	U	V	W	Х	Υ	Z	[
R	S	Т	U	V	W	Х	Υ	Z	[
							-				
\]	^	a	b	С	d	е	f	g		
¥]	٨	а	b	С	d	е	f	g		
h			k	<u> </u>					~		
h		j			m	n	0	p	q		
h	i	J	k		m	n	0	р	q		
r	s	t	u	٧	W	Х	у	Z	{		
r	S	t	u	٧	W	Х	У	Z	{		
•		•		•	.,		,		· ·		
1	}	~	DEL	FNC3	FNC2	Shft	Code C	FNC4	Code A		
	}	\rightarrow	D	F	F	S	С	F	С		
			L	3	2	Т	С	4	Α		

FNC1	Start A	Start B	Start C	Stop
F	*	*	*	*
1	Α	В	С	*

RJS, Minneapolis, MN 002-5572 34

Chara	cter Set	Tab	le E-3	3 (Code	128 –	- Subse	et C)		
LCD Scr									
00	01 \	02	03	04	05	06	07	80	09
0	0	0	0	0	0	0	0	0	0
0	1	2	3	4	5	6	7	8	9
10	11	12	13	14	15	16	17	18	19
1	1	1	1	1	1	1	1	1	1
0	1	2	3	4	5	6	7	8	9
20	21	22	23	24	25	26	27	28	29
2	2	2	2	2	2	2	2	2	2
0	1	2	3	4	5	6	7	8	9
	-			•			-		-
30	31	32	33	34	35	36	37	38	39
		3			3	3		3	
3	3 1	2	3 3	3 4	5 5	ა 6	3 7	ა 8	3 9
U				7	<u> </u>	0		0	9
40	41	42	43	44	45	46	47	48	49
4	4	4	4	4	4	4	4	4	4
0	1	2	3	4	5	6	7	8	9
50	51	52	53	54	55	56	57	58	59
5	5	5	5	5	5	5	5	5	5
0	1	2	3	4	5	6	7	8	9
60	61	62	63	64	65	66	67	68	69
6	6	6	6	6	6	6	6	6	6
0	1	2	3	4	5	6	7	8	9
70	71	72	73	74	75	76	77	78	79
7	7	7	7	7	7	7	7	7	7
0	1	2	3	4	5	6	7	8	9
				-					-
80	81	82	82	84	85	86	87	88	89
8	8	8	8	8	8	8	8	8	8
_		_	_		_	_	_	_	_
0	1	2	3	4	5	6	7	8	9
90	91	92	92	94	95	96	97	98	99
9	9	9	9	9	9	9	9	9	9
0	1	2	3	4	5	6	7	8	9
0-4-	01			Otes	O41	01			
Code B	Code C	F١	IC1	Start A	Start B	Start C	Sto	ор	
В					ט				

Code B	Code C	FNC1	Start A	Start B	Start C	Stop
С	С	F	*	*	*	*
В	С	1	Α	В	С	*

Note:

On the LCD Screen the Inspector will show a Yen symbol "¥"instead of a backslash "\" however it will print out as a backslash

On the LCD Screen the Inspector will show a right arrow " \to " instead of a tilde " \sim " however it will print out as a tilde.

Appendix F (GS1-128 Specification)

Testing Parameters

The D4000 Laser SP will inspect all GS1 Application Identifier (AI) content and length, this includes:

- FNC1 (Variable length Als must start with a FNC1 character)
- Multiple Al support (unlimited number of Als in a bar code)
- Date encodation (Als with dates will be tested for proper formatting)
- GTIN prefixes (Some Als require a prefix digit in the GTIN),
- Linked Als (Some Als require another Al to be encoded in the bar code)
- Numeric requirements (Some Als are numeric only)
- Testing to ensure 48 data characters (excludes sub-set changes) are not exceeded

FNC1 Testing

When a Code 128 symbol is decoded **AND** the first character *after* the Start character is **FNC1** then the symbol *must* follow the GS1-128 format and the verifier must have the following Code 128 sub-specifications setting:

Decode C128 as GS1-128

When a Code 128 symbol is decoded with the Code 128 sub-specifications setting of **Std 128** but the first character *after* the Start character **is** a **FNC1** then the following error will be displayed:

When a Code 128 symbol is decoded with the Code 128 sub-specifications setting of **GS1-128** and the first character *after* the Start character **is not** a **FNC1** then the following error will be displayed:

Data Content Testing

When Code 128 sub-specifications setting is GS1-128 and a GS1-128 bar code is inspected an additional screen will be inserted into the Data Analysis screens: (See Data Analysis, 8.0)

Example of a bad check digit in the GTIN:

RJS, Minneapolis, MN 002-5572 38

Example of an alpha-character in a numeric only AI:

Note:

If a bar code has multiple errors **only** the first error will be displayed

Example of a bar code with more than 48 data characters:

Note:

If a bar code data length is exceeded, the AI that exceeded the 48 character limit will be displayed

Example of an invalid date encoded in an AI:

Note:

For Month and Year only encodes the Day may be encoded as "00"

Appendix G (Magnifications)

UPC/EAN Magnifications & Bar Width Deviations

UPC and EAN symbols have fixed lengths and formats; therefore, the only way to change their sizes is to magnify them. Specifications relative to bar/space tolerances are published for 80% to 200% magnifications.

While the RJS Inspector D4000 does not measure the bars and spaces to derive a magnification, it does determine the relative sizes of the elements and therefore the bar width deviations.

When UPC and EAN symbols are analyzed, the approximate symbol magnification must be known in order to most accurately determine if the symbol is within tolerance.

For example, if a range of 90 - 115% magnification is selected and a 200% symbol is analyzed, there will be a greater chance of a warning message for the symbol (despite its being within specification) because of the stricter tolerances of a smaller symbol.

Conversely, if a range of 151% - 200% magnification is selected and a 100% symbol is analyzed, there will be a greater chance of an acceptance message for the symbol (despite its possibly not being within specification) because of the <u>larger tolerances of a larger symbol</u>.

Note:

Magnification choices affect only the traditional bar width deviation analysis.

Appendix H (Print Functions)

Print Functions

Scanned data may be printed if the RJS Inspector D4000 is connected to a printer with an interface cable.

Press the Print button at any time to display:

The lower row will contain one of two options that are scrolled with the **Select** button.

With the selected option chosen, press either **Enter** or **Print** to start printing.

Printout Options

Analysis

This option prints the *Text Analysis* data for the last symbol scanned. This option can also be used to print each individual symbol in the multiple scan mode prior to the last scan being completed. (See *Figure I-1* and *I-2*)

Storage

This option prints all analysis data stored in the buffer. The last bar code that was scanned is printed first.

When printing the buffer in multiple scan mode, don't initiate printing before all scans of the current analysis are complete, otherwise, some completed scans could be lost.

Appendix I (Computer Mode)

Output Data

When the **Computer** is enabled during **Setup**, as an output device, the data is output in a format that a PC can receive.

The only output for the D4000 Laser SP is Text Analysis (text) data output

Note:

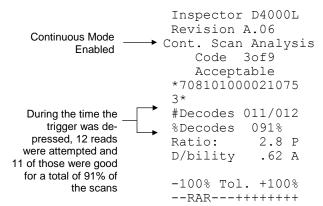

The D4000 Auto Optic is required for full ISO/ANSI inspection and the printable Analog Scan Profile (graphic) data

Figure I-1 (GS1-128 Failure)

```
Inspector D4000L
                   Revision A.06
                 Single Scan Analysis
                        GS1-128
                   Bad Mod. Check
 GS1-128 Error
                      ΑI
                          ( 02)
    Message
                   *F024143417*
                   C1232321218*
                   Modck:1 078 Fail
                   Expect:0 078
  Decodability
                   D/bility
Grade (34% / D)
                   -100% Tol. +100%
Bar code Width
Deviations Chart
                   ----++RARR++
```

RJS, Minneapolis, MN 002-5572 42

Figure I-2 (Code 3 of 9 Passing)

Appendix J (Battery Displays)

Battery Displays

If the "Low Battery" condition displays, there is still power left in the battery to advance to the next screen or even do a scan.

If the "Replace Battery" condition displays, batteries should be replaced immediately. The unit will not operate properly in this condition.

Replace Battery

Note:

NiCad batteries and charger are available as an option

Warning:

When using the optional charger, DO NOT charge alkaline batteries - this will damage the verifier

Appendix K (Bar code definitions)

Achieved Width

The calculated element width based on measurements.

Alphanumeric

A character set that contains letters, digits, and other characters such as punctuation marks. Also, a character that is either numeric or alpha. (In programming an alphanumeric cannot be used to do arithmetic)

ANSI

American National Standards Institute, Inc. 25 West 43rd Street, 4th floor New York, NY 10036

Aperture

The effective opening in an optical system that established the field of view.

Application Specification

A set of rules for using bar code symbols.

Aspect Ratio

The ratio of height to width of a bar code symbol.

Bar

An element of a bar code symbol whose reflectance is less than the global threshold. A Bar is the dark (reflective) element of a bar-code. (As opposed to a space which is the light reflective element)

Bar code

A group of parallel bars and spaces constituting characters that are machine and human readable (the code numbers while readable must still be interpreted). See bar code symbol

Bar code Reader

A device used to identify and decode a bar code symbol.

Bar code symbol

An array of rectangular bars and spaces which are arranged in a predetermined pattern following specific rules to represent elements of data that are referred to as characters. A bar code symbol typically contains a leading quiet zone, start character, data character(s) including a check character (if any), stop character and a trailing quiet zone.

Bar Height

The bar dimension perpendicular to the element width. The measurement of the long dimension of a bar element. (Also called bar length)

Bar Width

The lateral dimension of a bar; bar thickness.

Bar Width Ratio

The ratio of the widest bar or space to the narrowest.

Bar Reflectance (Rb)

The smallest reflectance value in a bar.

Bi-directional Code

A bar code that can be read left to right or right to left.

Bit

The narrowest code element (bar of space) that may contain information.

Character

The smallest group of elements assigned by a symbology to uniquely represent one or more numbers, letters, punctuation marks or other information.

Character Set

The numbers and/or letters and markings included in a bar code symbol.

Check Character (or Check Digit)

A character included within a bar code symbol whose value is used for performing a mathematical check of the validity of the decoded data.

Contact Code Reader

A light pen or other scanning device that must come into physical contact with the code medium in order to read the symbol.

Continuous Code

A bar code or symbol wherein the space between the characters is part of the code.

Decodability

This parameter grade can be "A," "B," "C," "D" or "F." The Decodability grade indicates the amount of error in the width of the most deviant element in the symbol. The less deviation, the

46

higher the grade. Decodability is a measure of print accuracy using the symbology reference decode algorithm.

Decode

Determining the information which has been encoded in a bar code symbol.

Decoder

The portion of a bar code reading system that performs the decode function.

Defects

This parameter grade can be "A," "B," "C," "D" or "F."

Defects are of two types, voids and spots. Voids are light areas in bars, and spots are dark areas in spaces.

The defect grade is determined by a relationship between the largest defect in the symbol and symbol contrast. The smaller the defect, the better the grade. Aperture size can affect grade; for example, using a small aperture to analyze a very wide element will permit detection of the largest defects.

Defects are usually voids, and these defects can be reduced by increasing the amount of ink (or equivalent).

Diffuse Reflection

Reflected light which emanates uniformly in all directions from the reflecting surface.

Dimensional Deviation (DD)

The measured deviation of bars and/or spaces of a scanned symbol from the specification.

Discrete Code

A bar code or symbol wherein the spaces between the characters are not part of the data.

Edge Contrast (EC) See Edge Contrast(min)

The difference between the space reflectance (Rs) and adjoining bar reflectance (Rb).

EC = Rs - Rb

Edge Contrast (min)

This parameter grade can be "A" or "F." Edge contrast is the Reflectance difference between adjoining bars and spaces. The minimum edge contrast is the smallest value of EC = R space – R bar found in the scan.

The grade is determined by calculating the edge contrast of every element in a symbol and then comparing the lowest value to a fixed threshold in the specification (15%).

If the value is equal to or greater than the threshold, the grade is "A." If the value is less than the threshold, the grade is "F."

Element

A generic term used to refer to either a bar or space in a bar code symbol.

Element Edge

The location where the scan reflectance profile intersects the midpoint between the space reflectance (R space) and bar reflectance (R bar) of adjoining elements. Visual measuring techniques will generally locate the element edge closer to the center of the bar.

Element Reflectance Non-uniformity (ERN)

The reflectance difference between the highest peak and lowest valley within each individual element and quiet zone. When an element consists of a single peak or valley, its element reflectance non-uniformity is zero.

Element Width

The thickness or width of a bar or space as measured from its leading edge to its trailing edge.

Encoded Area

The total linear dimensional space taken by all characters of a code pattern including start/stop and data.

First Read Rate

The percentage of successful "reads" of a bar code symbol on the first attempt.

Fixed Beam Scanner

A bar code reading device wherein coded items pass across a stationary incandescent or LED light source.

Flexo Film Master

A measurement standard symbol produced by printing the symbol on clear plastic film using the Flexographic printing process.

Gloss

A phenomenon related to the specular reflection of incident light. The effect of gloss is to reflect more of the incident light in a specular manner, and to scatter less. This effect occurs at all angles of incidence and should not be confused with the grazing angle which is specular reflection often referred to as sheen.

Global Threshold (GT)

The global threshold is drawn through the middle of a profile, to distinguish spaces above the line and bars below. The reflectance value is determined by dividing the symbol contrast (SC) by 2 and adding the minimum reflectance, Rmin.

GT = Rmin + (SC/2)

GS-1

GS1 designs and implements global standards and solutions to improve the efficiency and visibility of supply and demand chains globally.

Guard Bar

The first and last bars of a bar code symbol usually having the pattern 101. A guard bar generally follows the leading quiet zone and precedes the trailing quiet zone. This term is used mostly for UPC/EAN symbologies.

Infinite Pad Method

The method for measuring reflectance in which the sample substrate being measured is backed with enough thickness of the same type of substrate so that doubling the number of sheets does not change the measured value of reflectance.

Inspection Band

An area of the bar code symbol where measurements shall be taken spanning from 10% to 90% of the average bar height.

Inter-character Gap

In discrete barcodes, the space that separates two adjacent characters. When present, intercharacter gaps are considered spaces (elements) for purposes of edge determination and reflectance parameter grades.

Interleaved

A bar code in which characters are paired together using bars to represent the first character and spaces to represent the second.

ISO

International Organization for Standardization, organization that maintains the standards related to bar codes and bar code verifiers.

Ladder Code

A bar code or symbol printed vertically with the individual bars looking like the rungs of a ladder.

Laminate

See Over-laminate

Laser Scanner

A bar code reading device that uses a low energy laser light source for illumination.

Magnification Factor

The size of a printed bar code compared to a standard (nominal) size.

Maximum Element Reflectance Non-uniformity (ERN max)

The largest element reflectance non-uniformity in a scan reflectance profile.

Maximum Reflectance (Rmx)

The greatest reflectance value in a scan reflectance profile including quiet zone. (Note: **eRmx** is the greatest reflectance value of an element, not including quiet zone).

Minimum Edge Contrast (Ecmn)

The smallest edge contrast in a scan reflectance profile.

Minimum Reflectance (Rmn)

The smallest reflectance value in a scan reflectance profile.

Misread

A condition that occurs when the data output of a reader does not agree with the encoded data.

Modulation (MOD)

This parameter grade can be "A," "B," "C," "D" or "F."

The modulation grade is based on the relationship between minimum edge contrast (Ecmin) and symbol contrast (SC).

MOD = ECmin/SC

The greater the difference between minimum edge contrast and symbol contrast, the lower the grade.

Scanners and verifiers perceive the narrower bars and spaces to have less intensity than wider bars and spaces; the comparison of this diminished intensity of narrow elements to wide elements is called modulation. This condition is affected by aperture size.

Note: Since "ink spread" will reduce the width and intensity of single module space within a symbol, this is one thing to check in seeking to correct a low modulation grade

Module

The narrowest expected bar or space width.

Moving Beam Scanner

A laser device that dynamically searches for a bar code pattern by sweeping a moving optical beam through a field of view.

N (wide to narrow ratio)

In symbologies with two element widths, the wide to narrow ratio of elements is calculated by summing the average wide bar width and average wide space width and dividing the sum by 2 times Z. Inter-character gaps, if applicable, are not included.

N = (avg.wide bar + avg. wide space) / (2*Z)

Nanometer (nm)

A unit of measure used to define the wavelength of light, equal to 10-9 meter.

Nominal

The intended value for a specific parameter. Tolerances are generally specified as positive and negative deviations from this value.

No-Read (Non-read, Non-scan)

The absence of data at the scanner output after an attempted scan because of no code, defective code or operator error.

Nominal Size

The target size for a specific element or group of elements.

Numeric

A character set that contains only numbers.

Omni-directional

The ability to read a bar code symbol from any angle as long as the bar code passes across the scanner window.

Opacity

The property of a material that minimizes the show-through of printing from the back side or the next sheet.

Overhead

The number of characters in a symbol required for start, stop and checking.

Over-laminate

A coating or material adhered to the scanning surface of a bar code symbol.

Parity

A system for encoding characters as "odd" or "even" for self checking of barcodes.

Peak

The graphical pattern on a scan reflectance profile which looks like an upside down "U" or "V." Within a profile a peak represents a space. One or more peaks could also be found within an element representing a reflectance change within an element.

Plaque

A template used as a reflectance calibration standard (RCS). The known reflectance values are posted on the back of the plaque.

Print Contrast Signal (PCS)

A comparison between the reflectance (brightness difference) of bars and spaces in a symbol. PCS under a given set of illumination conditions is defined as follows:

PCS is calculated as follows:

Where:

L = Lightest (highest reflectance) D = Darkest (lowest reflectance)

Profile

See Scan Reflectance Profile

Quiet Zone

The area immediately preceding the start character and following the stop character in a bar code symbol as specified in a particular application and/or symbology specification.

Reference Decode

Each symbology type specifies a specific decoding method to be used in determining overall symbol grade.

This parameter grade can be "A" or "F." ("A" is pass and "F" is fail). If this parameter is "F" the overall symbol grade will also be "F" regardless of any other parameter. If this parameter is "A" the lowest of the other parameter grades determines the overall symbol grade.

Reflectance

A measure of the amount of light reflected from an illuminated surface.

Reflectance Minumum

This parameter grade can be "A" or "F." The reflectance value of the "lightest" space in a symbol must be equal to or greater than twice the reflectance value of the "darkest" bar.

Refl(max) = or > Refl(min) x 2 if "yes" "A" else "F"

Reflectance Calibration Standard

(See plaque) A standard or "known" reflectance value, usually printed on the back of a template or plaque. Bar code readers are calibrated for reflectance using these known values.

Required PCS

This is the minimum PCS percent required for the symbol.

Resolution

The dimension of the smallest code element that can be printed; the higher the resolution the clearer the image.

Scanner

An electronic device that converts printed information into electrical signals.

Scan Reflectance Profile

A record (usually graphically represented) of the reflectance measured using the reference reflectivity method as a function of distance across the entire bar code symbol.

Segment

Refers to the left and right grouping of modules or elements into segments to designate parity for checking validity of a scan.

Self-checking

A bar code or symbol that uses a checking algorithm that can be applied to each character, to guard against undetected errors. (Non-self-checked codes may use a check digit or other redundancy in addition to the data message).

Show-through

The generally undesirable property of a substrate that allows underlying markings of materials to affect reflectance.

Space

The element of a bar code symbol whose reflectance is greater than the global threshold. A Space is the light reflective element. (As opposed to a bar which is the dark reflective element.)

Space Reflectance (Rs)

The largest reflectance value in a space or quiet zone.

Specular Reflection

Reflection of light from a surface at an angle equal and opposite to the angle of incidence.

Start and Stop Characters

Characters typically used at the beginning and end of each bar code symbol.

Substitution Error

This error can be seen in a mis-encodation, mis-read or human operator error where characters that were to be entered were substituted with erroneous information.

Substrate

The material (paper, plastic, metal, etc.) upon which a bar code symbol is "printed" or reproduced.

Symbol

See Bar code symbol.

Symbol Contrast (SC)

This parameter grade can be "A," "B," "C," "D" or "F."

Symbol contrast is the difference in reflectance values of the "lightest" space (including the quiet zone) and the "darkest" bar of the symbol. The greater the difference, the higher the grade.

SC = Rmax - Rmin

Symbol Grade

The simple average of all the overall profile grades using the standard weighing

4.0 = A

3.0 = B

2.0 = C

1.0 = D

0.0 = F

The symbol grade may be stated as a decimal or converted to a letter grade. A measuring aperture number and nominal wavelength are also specified.

Symbology

A set of rules for encoding information in a bar code symbol.

Symbology Reference Decode Algorithm

A decoding algorithm that may be found in a particular application and/or symbology specification.

TAPPI

Technical Association of Pulp and Paper Industry. Technology Park/Atlanta, P.O. Box 105113 Atlanta, GA 30348-5115

Threshold (Global Threshold)

See Global Threshold)

Transmission Mode

The mode where light is transmitted through a film master symbol rather than reflected from a printed symbol.

Truncation

Decreasing the length of the bars in a bar code symbol below the normal specification. Truncation decreases a symbol's omni-directional readability and should be avoided.

Valley

The graphical pattern on a scan reflectance profile which looks like a "U" or "V." Within a profile a valley represents a bar. One or more valleys could also be found within an element representing a reflectance change within an element.

Vertical Redundancy

The availability of more than one scan path through a bar code symbol.

Visual Measurement

Measurements obtained by using human vision in the determination of characteristics of the bar code symbol.

Void

White or light reflective area in a bar caused by a printing error that can cause a bar to scan as a space.

Wide/Narrow Ratio

Ratio of narrow to wide elements.

X Dimension

The intended width of the narrow elements dictated by the application and/or symbology specification.

Zero Suppression

Technique used to shorten UPC symbols by omitting zeros from the bar-code.

Z Dimension

The achieved width of the narrow elements. Computation of Z is accomplished using different factors for some symbologies.